Parametric bootstrap under model mis-specification
نویسندگان
چکیده
Under model correctness, highly accurate inference on a scalar interest parameter in the presence of a nuisance parameter can be achieved by several routes, among them considering the bootstrap distribution of the signed root likelihood ratio statistic. The context of model mis-specification is considered and inference based on a robust form of the signed root statistic is discussed in detail. Stability of the distribution of the statistic allows accurate inference, outperforming that based on first-order asymptotic approximation, by considering the bootstrap distribution of the statistic under the incorrectly assumed distribution. Comparisons of this simple approach with alternative analytic and non-parametric inference schemes are discussed.
منابع مشابه
Consistent model-specification tests based on parametric bootstrap
In this paper we establish consistent tests of L2-type for the parametric functional form of the conditional mean of time series with values in Rd. A recent result on asymptotic distributions of U -statistics of weakly dependent observations is invoked to obtain the limit distributions of the test statistics. Since the asymptotic distributions depend on unknown parameters in a complicated way, ...
متن کاملComparing two testing procedures in unbalanced two-way ANOVA models under heteroscedasticity: Approximate degree of freedom and parametric bootstrap approach
The classic F-test is usually used for testing the effects of factors in homoscedastic two-way ANOVA models. However, the assumption of equal cell variances is usually violated in practice. In recent years, several test procedures have been proposed for testing the effects of factors. In this paper, the two methods that are approximate degree of freedom (ADF) and parametric bootstr...
متن کاملModels as Approximations — Part II: A General Theory of Model-Robust Regression
We discuss a model-robust theory for general types of regression in the simplest case of iid observations. The theory replaces the parameters of parametric models with statistical functionals, to be called “regression functionals” and defined on large non-parametric classes of joint x-y distributions without assuming a working model. Examples of regression functionals are the slopes of OLS line...
متن کاملEstimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring
This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...
متن کاملTerm Structure of Risk under Alternative Econometric Specifications
This paper characterizes the term structure of risk measures such as Value at Risk (VaR) and expected shortfall under different econometric approaches including multivariate regime switching, GARCH-in-mean models with student-t errors, two-component GARCH models and a non-parametric bootstrap. We show how to derive the risk measures for each of these models and document large variations in term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2012